Rutgers University: Algebra Written Qualifying Exam January 2019: Problem 1 Solution

Exercise. Let P be a Sylow p-subgroup of a finite group G and H be a normal subgroup in G

(a) Prove that the intersection of P and H is a Sylow p-subgroup in H.

Solution. Let P be a Sylow p-subgroup of G and $H \triangleleft G$. $|P| = p^n$ for some prime p such that $p^n \mid |G|$ but $p^{n+1} \nmid |G|$ Case 1: $p \nmid |H|$ If $p \nmid |H|$, then the Sylow *p*-subgroup of *H* is $\{e\}$. $P \cap H = \{e\}$ since the elements of P must have order $p^j, 0 \le j \le n$, and the order of the elements of H must divide |H|Since $p \nmid |H|$, both of the conditions hold only when j = 0. Thus, $p \cap H = \{e\}$, the Sylow *p*-subgroup of *H*. <u>Case 2</u>: $p \mid |H|$ Then $|H| = p^k m$ for some k s.t. $1 \le k \le n$ and qcd(p,m) = 1Since P and H are groups, $P \cap H$ is also a group. Moreover, $P \cap H \subseteq P$ and $P \cap H \subseteq H$. Thus, $|P \cap H| \mid |P|$ and $|P \cap H| \mid |H|$ So, $|P \cap H| = p^{\ell}$ where $0 < \ell < k$ Sylow II states that any subgroup of order p^i is contained in a Sylow subgroup. So $\exists a$ Sylow *p*-sbugroup of *H*, say *Q*, such that $|P \cap H| \subseteq Q$ and $|Q| = p^k$ Also by Sylow II, any two Sylow p-subgroups of G are conjugate So, $\exists q \in G$ s.t. $Q \subseteq qPq^{-1}$ (note: this is equivalent to saying Q is contained in a Sylow *p*-subgroup of G) $\implies q^{-1}Qq \subseteq P$ Also, $Q \subseteq H$ and since H is a **normal** subgroup of G, $gHg^{-1} = H$ $\implies g^{-1}Qg \subseteq H.$ Therefore, $g^{-1}Qg \subseteq P \cap H$. $|Q| = |q^{-1}Qq|$ since they are conjugates $\implies |Q| = |g^{-1}Qg| \le |P \cap H|$ But $P \cap H \subset Q$. Thus, it follows that $P \cap H = Q$, i.e. $P \cap H$ is a Sylow *p*-subgroup of H

(b) Find an example showing that for non-normal subgroups H the statement (a) may not be valid.

Solution. Let $G = S_3$. |G| = 6 so a Sylow 2-subgroup is a subgroup of order 2. Let $P = \{(), (1 \ 2)\}, H = \{(), (1 \ 3)\}.$ Then P is a Sylow 2-subgroup of G and H is a subgroup of G. But $P \cap H = \{()\}$ is **not** a Sylow 2-subgroup of H.